Zhenghui Wu1 Moran Amit1 Tse Nga Ng1

1, University of California, San Diego, La Jolla, California, United States

Photosensors responsive to the short wavelength infrared (SWIR) spectra are used in a variety of applications including environmental monitoring and medical diagnosis. However, conventional SWIR sensors are limited by complex die transfer and bonding processing. Here we are advancing SWIR photodiodes by using a new generation of narrow bandgap conjugated polymers that are processed by solution processing techniques and allow simple direct deposition. The polymers are processed into bulk heterojunction photodiodes with photoresponse up to wavelength of 1.8 micron. The performances of devices with different polymer structures were compared through metrics including detectivity, quantum efficiency, response time and rectification ratio. Example applications including blood pulse measurements and spectroscopic identification will be demonstrated.

In addition to optoelectronics, I will also show an example of an instrumented glove for augmenting movement disorder assessments. The system is based on capacitive pressure sensing, and the validation allows an objective, repeatable metric that improve resolution over the current best practices. The glove measures the power required to move a patient’s arm and shows reduced inter- and intra-rater variability. Our approach using wearable sensors offers an objective route for the characterization of movement patterns, which would permit the effective evaluation of intervention outcomes, as well as provide a platform for novel motor interventions in the future.