Jun Liu1

1, Pacific Northwest National Laboratory, Richland, Washington, United States

Lithium (Li)-ion batteries are widely used for many applications today, but there is an increasing demand to increase their specific energy (Wh kg−1) and energy density (Wh L−1). Among the many options, Li metal is considered one of the most promising electrode materials for future batteries. When coupled with a high capacity cathode material, such as high-nickel-content lithium nickel manganese cobalt oxide (high-Ni NMC) or sulfur (S), rechargeable Li metal batteries have the potential to achieve a specific energy much higher than 350 Wh kg−1. However, achieving such goals requires fundamental breakthroughs and new knowledge to optimize and integrate of all active inactive components on relevant scales with appropriate cell architectures. This talk will discuss the materials science and materials chemistry challenges, along with potential solutions, of using Li metal anodes based on the system level requirements of a high-energy cell. The important relationships between the Li anode and other cell components, such as high cathode loading and restricted amounts of electrolyte and Li, are reviewed in order to inspire new ideas to effectively address the grand challenges in rechargeable Li metal batteries.