Liangbing Hu1

1, University of Maryland, College Park, Maryland, United States

I will start by giving an overview of active research activities in my research group located at University of Maryland Energy Research Center, including wood materials toward sustainability, 3000K high temperature materials and processing, and beyond-Li ion batteries (solid state, Na-ion). Then I will focus on our recent development on:
garnet-based solid-state Li-metal batteries including interface engineering to improve the wetting between Li metal anode and Garnet solid-state electrolyte (Nature Materials 2016; JACS 2016; Advanced Materials 2017; Science Advances 2017); Garnet based 3D Li ion conductive framework toward high energy density Li-S batteries (EES 2017); Garnet nanofiber based flexible, hybrid electrolyte with a high Li ion conductivity (PNAS 2016).
assembly and functionalization strategies of wood nanocellulose aimed at specific properties, with an eye toward high impact applications including energy, electronics, building materials and water treatment, including nanomanufacturing and light management in transparent nanopaper for optoelectronics (as a replacement of plastics); mechanical properties of densely packed nanocellulose for lightweight structural materials (replacement of steel, Nature 2018); artificial tree for high-performance water desalination and solar steam generations; mesoporous, three-dimensional carbon derived from wood for advanced batteries (replacement of metal current collectors for beyond Li-ion batteries).