Changhyun Pang1 2

1, School of Chemical Engineering, Sungkyunkwan University, Suwon-si, , Korea (the Republic of)
2, Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, , Korea (the Republic of)

Recently, extraordinary performances of natural creatures living in various conditions have been explored to understand their reversible dry/wet adhesion, including gecko feet, insect secretion, mosquito needles or endoparasitic worm’s proboscis, octopus suction cups, and slug’s footpad with viscous mucus. Extensive studies on the adhesive properties of such animal skins have revealed various multiscale architectures inducing various physical interactions. The attachment phenomena of various hierarchical architectures found in nature have extensively drawn attention for developing highly biocompatible adhesive on skin or wet inner organs without any chemical glue. Structural adhesive systems have become important to address the issues of human-machine interactions by smart outer/inner organ-attachable devices for diagnosis and therapy.
Breakthroughs in flexible and conductive materials have accentuated the development of wearable or organ-attachable bioelectronics for stable biosignal monitoring and drug delivery. For such medical applications, the devices need to manifest conformal contact on human skin even under dynamic movements, as well as repeatable, long-term attachment without skin irritations or chemical contaminations. Here, we investigated an artificial reversible wet/dry adhesion systems biologically inspired by the suction cups of octopi and amphibian’s pad. Our biologically inspired architectures exhibit strong, reversible, highly repeatable adhesion to silicon wafers, glass, and rough skin surfaces under various conditions. Applying these bioinspired architectures to interfacial adhesive layers can attribute to developing skin-attachable or implantable bioelectronics for health diagnosis, controlled drug therapeutics, and achieving multifunctional integrated devices for ubiquitous-healthcare systems.