Ji-Won Seo1 Hyojung Kim1 Hyunjoo Lee1

1, Korea Advanced Institute of Science and Technology, Daejeon, , Korea (the Republic of)

In order to improve the signal accuracy and long-term monitoring of electronics on biological skin, it is essential to achieve a conformal and robustly adhered electronics/biological skin interface. Here, we suggest a biocompatible calcium (Ca)-modified silk adhesive for robust epidermal electronics on biological skin. At optimized weight ratio of silk:Ca2+ of 70:30, the silk adhesive shows strong adhesion force (> 600 N/m) through enhanced mechanical interlocking at interface. The physical mechanism facilitates a high adhesion on various substrates and a reusability of silk adhesive. Moreover, a water-degradability of silk adhesive shows the easy detachment without any high external force. With the multifunctional characteristics such as reusability, biocompatibility, and water-degradability, we fabricate the practical epidermal electronics: strain sensor, touch sensor, and long-term drug delivery system to demonstrate the potential of the proposed silk adhesive.