Tsuyoshi Sekitani1

1, Osaka University, Osaka, , Japan

We present an implantable sheet-type flexible electronic sensor system for long-term simultaneous monitoring of an electrocorticogram (ECoG) from the brain surface and local field potential (LFP) from the deep brain. Ultrasoft gel electrodes provide a minimally invasive interface consisting of highly conductive nano-conductive materials including Ag-based nanowires, thermoplastic polymers, and bio-compatible gels. The gel composite shows conductivity greater than 10,000 S/cm and can be stretched more than 100% without any reduction to its electrical and mechanical performance. Hence, it can be stretched across arbitrarily curved surfaces, including the ultrasoft brain surface.

By integrating ultrafsoft gel electrodes, an ultraflexible amplifier, and a wireless Si-LSI platform with a thin-film battery, we intend to demonstrate the applications of long-term implantable wireless sheet sensors, including 64-channel sheet-type electric potential monitoring systems. This wireless system with soft gel electrodes can measure biological signals of less than 1 μV. Taking full advantage of this system, simultaneous signals from the cerebral cortex in the ECoG and LFP have been wirelessly measured in animal experiments including non-human primates for over a month. Long-term biocompatibility, electrical performance, and mechanical stretchability and durability are discussed for the integration of nanomaterials and processes and wireless low-noise sheet-type systems.

This research is partially supported by the Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) from Japan Agency for Medical Research and development, AMED.