talk-icon
Description
Keliang Wang1 Qi Fan2

1, Fraunhofer USA, Center for Coatings and Diamond Technologies, Michigan State University, East Lansing, Michigan, United States
2, Michigan State University, East Lansing, Michigan, United States

Radio frequency (RF) dielectric barrier discharge plasma was used to exfoliate graphite oxide (GO) into graphene. The GO was synthesized from a modified Hummers method. The exfoliation occurred swiftly once the RF power and gas pressure reached a level that enabled sufficient energy transfer from the plasma to the GO. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed that graphene or carbon nanosheets were successfully prepared. The plasma exfoliation mechanism was revealed based on the microstructure characterization and optical emission spectroscopy, which indicated that oxygen was released at the moment of exfoliation. Inspired by the success of GO exfoliation, N-doping was realized by treating pyrrole-modified GO with plasmas. The N concentration in the resulted graphene depended strongly on the plasma gas. Of the gases studied, CH4 treated pyrrole-modified GO (GO-PPY-CH4) contained considerable concentration of N that was beneficial to electrical double layer capacitors (EDLCs). Supercapacitors made of the N-doped graphene exhibited promising capacitive characteristics. Electrochemical measurements showed that the GO-PPY-CH4 presented an initial specific capacitance of ~312 F g-1 under 0.1 A g-1 charge/discharge current and ~100% retention after 1000 consecutive cycles under currents ranging from 0.1 to 10.0 A g-1 in 6 mol L-1 KOH electrolyte. This study demonstrated that the plasma exfoliation was an efficient approach to fabricating graphene and N-doped graphene that had promising potential to be high-performance electrode materials for EDLCs.
Furthermore, flexible solid-state supercapacitors featuring lightweight and large capacitance have many attractive applications in portable and wearable electronics. The study demonstrates a magnetically enhanced dielectric barrier discharge that has the potential to efficiently exfoliate polyaniline-modified graphene at low input power. The plasma exfoliated N-doped graphene is subsequently used to fabricate flexible solid-state supercapacitors, which exhibit large specific capacitance of 45 mF/cm2 at 0.2 A cm-2 charging rate, ~100% capacitance retention after 1000 charge/discharge cycles at different current densities, and outstanding mechanical flexibility. The magnetically enhanced plasma exfoliation of graphite oxide offers a potentially cost-effective approach to producing high-quality carbon nanomaterials for energy storage.

Tags