Byeonghak Park1 Daeshik Kang2 Tae-il Kim1

1, Sungkyunkwan Univ, Suwon, , Korea (the Republic of)
2, Ajou University, Suwon, , Korea (the Republic of)

With increasing demand for the detection of delicate bio-signals for medical electronics, the Internet of Things (IoT), E-skin and flexible integrated circuit (IC) devices, an enhancement in sensitivity has become a major issue in flexible mechanosensors, however, overcoming the limited sensitivity remains problematic. Here, we introduce mechanosensors inspired by spiders having an ulltrasensitivity, durability. For ultrasensitivity and durability, we considered the geometrical effects in cracks and self-healable polymers. By controlling crack depth by simple propagating process, the sensitivity of our sensor shows ~15,000 in 2% strain, which is the world best sensitivity value. Due to the high sensitivity, the signal-to-noise-ratio is 6 times higher than before, up to ~35 so that it can be used in sensing human voice clearly. Also, self-healable polymer helps to recover the crack gaps after 25,000 cycles. We introduce the possilibility of semi-permanent uses over 1,000,000 cycles in our sensors. The spider inspired sensory system with high sensitivity and durability would provide versatile novel applications such as E-skins, devices for medical applications, and IoT applications etc.