Josef Zwanziger1

1, Chemistry, Dalhousie Univ, Halifax, Nova Scotia, Canada

Application of mechanical stress to glass causes interesting changes in how it transmits light. This interplay is summarized by the elasto-optic tensor, the key metric for technological applications including zero stress-optic glass, and reduced stimulated Brillouin scattering glass. Fundamentally, these effects are controlled by the glass chemistry, and in particular the nature of the chemical bonds that make up the glass. We will summarize our approach to this problem, which is focused on both an empirical and ab initio approach to the structure-property relations governing the elasto-optic tensor. We will describe the control of the stress-optic response through judicious choice of glass chemistry, and also describe our current progress in understanding and developing glass with reduced stimulated Brillouin scattering. We will include discussion of both average properties and energy-dispersive effects. We will show how these effects may be computed ab initio, with a reasonable trade-off between accuracy and speed, and illustrate a bond-based model we are developing that attempts to put in simple terms the empirical relations we have discovered.