Richard Brow1

1, Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri, United States

Borate, phosphate, and borophosphate glasses have been developed for a variety of technological applications, including fast ion conductors, optical substrates, and biomedical devices. For the latter, compositions are often tailored to control the rate at which physiologically significant ions are released to induce the desired biomedical response. These reaction rates depend on the hydrolysis of bonds that link neighboring glass forming polyhedra as well as the hydration of bonds associated with other metal cations that modify the glass forming network, and so detailed understanding of the glass structure connects composition to design performance. For borate and borophosphate glasses, the network hydrolysis rates decrease with increasing fractions of tetrahedral borate. For phosphate glasses, hydrolysis is not significant in neutral pH physiological conditions, but the hydration rates of metal cations are faster when they are linked to chain-forming P-tetrahedra than when they are linked to a chain-terminating tetrahedron. Quantitative and qualitative structural information about Na-Ca-borate, phosphate, and borophosphate glasses, obtained by techniques like nuclear magnetic resonance spectroscopy, Raman spectroscopy, and ion chromatography, will be described and used to explain their bio-functionality.