Dante Quirinale1

1, Neutron Technologies Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States

There is great interest in a developing understanding of the relationships between structures and
dynamics in liquid and glassy systems. Metallic liquids, which exhibit a degree of short and medium range ordering, are well suited to scattering probes, but there are many difficulties associated with selecting the proper furnaces for such studies. The Neutron Electrostatic Levitator (NESL) [1] at the Spallation Neutron Source is a containerless environment developed for challenging systems, including high temperature alloys and undercooled liquids. It provides a high vacuum, high purity, non-contact environment for fundamental studies of materials at wide temperature ranges. Combined with x-ray scattering data and isotopic substitution, the system is well suited to structural characterization of liquids via pair distribution function analysis, as has been successfully demonstrated at the Nanoscale Ordered Materials Diffractometer (NOMAD) [2,3].
A series of upgrades has improved the stability of the levitator and enabled new avenues of exploration. Recently, the system has been operated at the Wide Angular Range Chopper Spectrometer (ARCS) [4] and is currently being commissioned at the Cold Neutron Chopper Spectrometer (CNCS) [5] for high resolution inelastic and quasi-elastic scattering, enabling non-contact probes of excitations in glass forming liquids as well as high temperature self-diffusion measurements. The current capabilities and characteristics of the levitation furnace, progress in inelastic scattering measurements, and early results from the commissioning at CNCS will be discussed.
[1] Mauro, N. A., A. J. Vogt, K. S. Derendorf, M. L. Johnson, G. E. Rustan, D. G. Quirinale, A. Kreyssig et al. "Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source." Review of Scientific Instruments 87, no. 1 (2016): 013904.
[2] Neuefeind, Jörg, Mikhail Feygenson, John Carruth, Ron Hoffmann, and Kenneth K. Chipley. "The nanoscale ordered materials diffractometer NOMAD at the spallation neutron source SNS." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 287 (2012): 68-75.
[3] Johnson, M. L., M. E. Blodgett, K. A. Lokshin, N. A. Mauro, J. Neuefeind, C. Pueblo, D. G. Quirinale et al. "Measurements of structural and chemical order in Z r 80 P t 20 and Z r 77 R h 23 liquids." Physical Review B 93, no. 5 (2016): 054203.
[4] Abernathy, Douglas L., Matthew B. Stone, M. J. Loguillo, M. S. Lucas, O. Delaire, Xiaoli Tang, J. Y. Y. Lin, and B. Fultz. "Design and operation of the wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source." Review of Scientific Instruments 83, no. 1 (2012): 015114.
[5] Ehlers, Georg, Andrey A. Podlesnyak, Jennifer L. Niedziela, Erik B. Iverson, and Paul E. Sokol. "The new cold neutron chopper spectrometer at the Spallation Neutron Source: design and performance." Review of Scientific Instruments 82, no. 8 (2011): 085108.