Cedric Masante1 Toan Thanh Pham1 2 Nicolas Rouger4 Gauthier Chicot1 2 Florin Udrea3 David Eon1 Etienne Gheeraert1 Daniel Araujo5 Julien Pernot1

1, University Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, , France
2, Univ. Grenoble Alpes, CNRS, Grenoble INP G2Elab, Grenoble, France, Grenoble, , France
4, Université de Toulouse; LAPLACE; CNRS; INPT; UPS, Toulouse, , France
3, Department of Engineering, The University of Cambridge, Cambridge, , United Kingdom
5, Dpto. Ciencia de los Materiales, Universidad de Cadiz, Cadiz, , Spain

Diamond is a fascinating semiconductor with exceptional physical properties such as a wide band gap, a high breakdown electric field (10 MV/cm), an outstanding thermal conductivity (20 W/cm/K) and high carrier mobilities. These exceptional properties, or more precisely, the combination of some of these properties makes diamond an ideal semiconductor for high power and/or high frequency electronics which should surpass other materials like silicon, silicon carbide or gallium nitride. Numerous diamond field effect transistors are under investigation: H-terminated accumulation FET, O-terminated inversion channel FET, metal-semiconductor FET and junction FET.
In this work, we propose a new transistor concept in order to exploit the full potentialities of diamond material1. The deep depletion concept will be described and proposed for MOSFET devices. A proof of concept of deep depletion diamond MOSFETs will be presented1-3. Finally, the recent progresses achieved in terms of device performances will be discussed.
1 T.T. Pham, N. Rouger, C. Masante, G. Chicot, F. Udrea, D. Eon, E. Gheeraert, and J. Pernot, Appl. Phys. Lett. 111, 173503 (2017).
2 T.T. Pham, A. Maréchal, P. Muret, D. Eon, E. Gheeraert, N. Rouger, and J. Pernot, J. Appl. Phys. 123, 161523 (2017).
3 T.T. Pham, J. Pernot, G. Perez, D. Eon, E. Gheeraert, and N. Rouger, IEEE Electron Device Lett. 38, 1571 (2017).